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Complex Images for Electrostatic Field
Computation in Multilayered Media

Y. Leonard Chow, Member, IEEE, Jian Jun Yang, Member, IEEE, and Gregory E. Howard

Abstract —A rapidly convergent algorithm is presented to find
the spatial simulated images of a point charge in multilayered
media. The simulated images turn out to be complex; i.e., they
have complex amplitudes and are located at complex positions.
Surprisingly, these complex images give very accurately (error
~ 0.1%) the static field in multilayered media. The examples of
two- and three-layered media are examined, together with the
available exact image solutions of singly or doubly infinite
series. It is believed that the accuracy and rapid convergence of
the complex images derive from the extra degrees of freedom
arising from the imaginary components of the amplitude and
pesition.

1. INTRODUCTION

HE Green’s function—-moment method technique has

been used for the static analysis of 2-D transmission
lines [1], [2] and 3-D interdigital capacitors [3]. For a
two-layered dielectric with or without a ground plane, the
Green’s function is represented as an infinite series ob-
tained from image theory [1], [3]. For the three-layered
media, the Green’s function is represented as a doubly
infinite series of images {2]. As pointed out in [4], the
extension of this type of Green’s function to more than
three dielectric layers is impractical, because for N dielec-
tric layers, it should consist of an N —1 multiply infinite
series.

In this paper, we present an approach which makes it
practical to find the simulated images of a point charge in
multilayered media. For two-layered or three-layered me-
dia, instead of an infinite or a doubly infinite series of
images, the Green’s function presented in this paper
consists of only four terms, i.e., an effective source term
plus three complex images. This new Green’s function is
shown to give an error of the order of 0.1% when com-
pared with the rigorous infinite series solution. Also, the
Green’s function for the layered media with more than
four layers still consists of four similar terms.

Complex image theory has been successfully used to
solve the dynamic radiation problem in layered media
[6]-[9]. For static ficld computations in layered media, it
is shown in this paper that the complex images can also
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Fig. 1. Point charge in free space.

give the real field. To find the complex images, the same
numerical algorithm, Prony’s method [11], can be used.
No matter how many layers are involved, the sample
points used in Prony’s method are obtained in the same
manner. This situation is analogous to using optimized
simulated images [10] for the field of a point charge
outside of an arbitrarily shaped conductor.

In the following presentation of the theory, we take
two- and three-layered media as examples where the
exact image solutions of infinite series are available. They
allow a comparison between the complex image solution
and the exact image solution. After this comparison, a
general procedure is presented to find the complex im-
ages of a point charge in multilayered media.

II. THEORY
A. Point Charge in Free Space

For easy understanding and comparison with the multi-
layered cases, we begin with a point charge g, in free
space, as shown in Fig. 1. The spatial potential function of
this point charge is known from Coulomb’s law:

q
P=—0
dmregrg

(1)

where

(2)

ro =V (x = x0) "+ (¥ = yo) >+ (2 = 2,)°
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Fig. 2. Point charge on a microstrip substrate.

Through the Fourier transform, it is easily shown that
the spectral potential function is

do

D(y,z2,2,) = e Yz =l 3
(r220) = 5. 3)

where
y=‘/k§+k§. (4)

The spatial potential function (1) is the inverse Fourier
transformation of the spectral potential function (3), i.e.,

Qo _ _1_ 2][“" 9o
4meyr 2 - 2€qY

- eIz 20l g mikulx—x0)p —Ik, (Y =Y0) g dk,. (5

It can be easily shown by direct substitution that the
spatial potential function (1) satisfies the Possion equa-
tion even if the source location (x,,,,z,) is complex.
The same applies to (5), which is the identity used below.

B. Point Charge on a Microstrip Substrate

As shown in Fig. 2, a point charge ¢, is located at
(xg,¥o,zo) above a microstrip substrate. The spectral
domain potential function ® at (x,y, z), which satisfies
the Possion equation and all the boundary conditions, can
be easily derived using the transmission line theory given

in [5]:

_ ,—2vh
§=_To . e—y|z—zo|+ﬂ___e—y(z+zo) :
2e0y 1— Ke= 2"
220, zy=0 (6)

where K =(1—¢,)/(1+ ¢,). Expanding (6) into a Taylor
series:

4o
2egy

b= (e—YIZ*Zol + Ke~7(z+20)

+ Z Kn*l(KZ _ 1)e-y(3+z0+2nh)) (7)

n=1
and substituting (7) into the identity (5), we have

1 K
—+—+
rg Fo

q
P=—
4e,

* 1
)Y K"*u@—l)r—) (8)

n=1 n
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where \
ro =V (x = x0)2+(y = o) + (2 - 20)°
ro=y (x = x0)*+ (¥ = yo) + (2 + 20)°

rn:‘/(x_xo)z‘f'(y—y0)2+(f{:+20+2nh)2.

Expression (8) stands for an exact image solution for
the microstrip problem in three dimensions, which is
equivalent to that in two dimensions given by Silvester [1].
This exact image solution will be taken as the benchmark
of the complex image solution discussed below.

To get the complex image solution, the following two
steps are always taken:

1) Find the limit of y — of the function in (6), i.c.,

K _ e—Z'yh
lim g = ©)

2) Subtract the above limit from the original function
and match the remainder with a short sum of decaying
exponential functions, i.c.,

K - e~2yh

1— Ke 2"

™M=

K=

i

a;eb (10)
1

where a, and b, are the complex coefficients determined
through Prony’s method [11]. N is the number of expo-
nential terms, generally taken as 2 ~5. In this paper,
N=3

Substituting (10) into (6), and taking the inverse Fourier
transformation of ®, we have

1 K XN oa
—+—+Z—)
p

do
¢_ !
ro Ty i=1"

 4meg

(11)

where r,= \/(x - x0)2+(y - y0)2+(z +z— b,)2 is a
complex distance, with b, being complex.
In (11), if z=2z,=0, then the first two terms
(1/ry+ K /rp) can be written as
2 1

(1+e€) rg

which is essentially an effective homogeneous medium
potential function wherein the dielectric constant is equal
to the average of two media. The short series can be
considered as a correction to the effective homogeneous
medium term, each standing for a simulated image with
complex amplitude a; located at complex location
(X0, Y0, 20 — b))

Table I lists the complex image coefficients for two
microstrip substrate examples. It is seen that the complex
image coefficients are either paired as complex conjugate
of each other, or just singles and real. This explains why
the complex images give a real-valued field. Table I lists
the values of the function @ computed by the exact image
solution (8) and the complex image solution (11). It is
seen that the difference between these two solutions is of
the order of 0.1% for all the source-to-field point dis-
tances tabulated.
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TABLE 1
CompLEX IMAGES OF A POINT CHARGE ON A MICROSTRIP SUBSTRATE

€, =255, h=1.0 mm

€,=9.6, A=1.0mm

i a,

b,
(x 10 mm)

a,

b,
(X 10 mm)

—0.1985
—0.3886 + j0.1009
—0.3886~ j0.1009

—0.7802
0.1084 + j0.3897E-1
0.1084 — j0.3897E-1

W N

—0.1912
—0.3197 + j0.1474
—0.3197-j0.1474

—0.2725
0.4367E-1+ j0.1255E-1
0.4367E-1— jO.1255E-1

TABLE II
PotenTIAL FuncTioN @ ComMPUTED BY THE EXACT IMAGE SOLUTION AND THE

CoMPLEX IMAGE SOLUTION (zo =0,z=0,p= \/(x - x0)2+ (v—- yo)2 )

€, =2.55, h=1.0mm €, =96, A =1.0mm
p Exact Image  Complex Image | Exact Image Complex Image
(mm)  Solution (8) Solution (11) Solution (8) Solution (11)
0.1 5298.49 5298.45 1729.14 1729.03
0.6 619.37 619.36 192.20 192.16
1.1 223.66 223.67 64.25 64.27
1.6 99.41 99.43 25.69 25.72
2.1 49.17 49.17 11.14 11.14
3.1 15.13 15.13 2.49 2.48

C. Point Charge in a Substrate — Superstrate Structure

As shown in Fig. 3, a point charge g, is located at the
interface of two media (i.e., (z,=0)). The spectral do-
main potential function & at the interface of the two
media (i.e., (z = 0)) is derived using the transmission line
theory given in [5]:

= 9o
b=—1 .4
2606r17 (y)
A(y)
2
(e +cthyh) /(1+ €, cthyhy) +(e,, /€, )cthyhy

(12)

Following the same two steps as those in subsection II-B,
we have

lim A4 =
Vlin‘” ) l+e., /€, (13)
N
A _— s by,
(7) I+e,/¢€,4 lglale (14)

Substituting (14) into (12), and taking the inverse Fourier

nyt+n,+ns;=n

Kl = (1_ 6,1)/(1‘1‘ e‘rl)

transformation of @, we have

1 N g
Xl 15

i=1 1

q 2
d=—0 _
dmege, \ 1t e, /e, 1y

The first term in (15) can again be considered an
effective homogeneous medium potential function with
dielectric constant equal to the average of two media. The
short series is, again, a correction to the effective homo-
geneous medium term.

For comparison, following the stated procedure of [2],
the exact image solution of the substrate—superstrate in
Fig. 3 is derived in terms of a doubly infinite series:

4y 1
P = —_—
dmey €4t €,,
2] n n’
* n
. Z E nln,ln l(—l) 3K1n1+n3K512+n3
”:0(H1,n2,n3=0) 17027830
1 K, 1 K,
—————t— 16
rnl ) rn3 rn4 ( )
where

KZ = (Erl - 61*2)/(€r1 + 6r2)

r'm = \/(x - x0)2+(y - J’o)z"' [2”1(h1 + hy) +2n,h, +2n3h1]2

Fa2 =V (5 = %6)2 4 (3 = yo) >+ [21,( by + hy) + 2nyhy + 2( ns +1)h,]

Fo3 = \/(x — x0)2+(y - y0)2+ [2n1(h1 +hy)+2(n,+ 1), -i—2h3h1]2

Fos =V (% = %)+ (¥ = ¥o)+ [2(ny + 1) (hy + hy) + 2n,h, +2n5h,)7.
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Fig. 3. Point charge in a substrate—superstrate structure.

It turns out that the rigorous solution (16) converges
very slowly, especially when the source-to-field point dis-
tance is large. To check the accuracy of the complex
image solution (16), we would rather calculate the inverse
transformation of (13) directly by using numerical integra-
tion. Table III lists the complex image coefficients for two
sets of dielectric parameters. It is seen that, analogous to
the case of open microstrip substrate, the complex image
coefficients in Table III are also complex conjugates of
one another. Table TV-lists Some values of the potential
function ® computed by the complex image solution (16)
and by numerical integration. It is seen that the differ-
ence is again less than 0.1% for the field-to-source point
distances tabulated. '

For the case of arbitrary z and z,, one can easily derive
a spectral potential function using transmission line the-
ory [5]. Then the spatial image solution of the potential
function can be obtained by following the same steps as
(6) to (11). '

D. Point Charge in a General Multilayered Medium
Structure

By a general multilayered medium structure, we mean
that (i) the layered medium may have any number of
layers and (ii) the source and field points may be located
at any position within the layered medium. Fig. 4 shows a
point charge in a general multilayered medium structure,
where an exact image solution is impractical and unavail-
able.

For the derivation of the spectral-domain scalar poten-
tial @ in a general multilayered medium, we can use the
transmission line theory given in [5]. ® generally has the
form

(17)

where e,, is the relative dielectric constant of the layer in
which the point charge g, is located. In general, the
spatial coordinates z and z, in F(y, z,z,) may not ap-
pear as an exponential function as in (6). To avoid the
sophisticated expression of the spatial potential function,
for arbitrary z and z,, we would rather fix z and z, in

numerical computations.
Then, we first take the limit of F(y, z, zy) at y >, i.e.,
lim F(y,z,zy)=F,. (18)

y >

1123

As the second step, we subtract the limit F, from the
original function F(y) and make the following numerical
match: '

N
F(y,z,2¢)— Fy= Y a;eb?.
i=1

(19)

Substituting (19) into (17) and taking the inverse Fourier
transformation of ®, we get the complex image solution
of &: '

q
P = 0

= 20
dmege,, (20)

1 ¥ a
Fo—+ ), —)
Fo i=1Ti

where

ro=V (x—x0)7+(y = ¥o)

ro= (5 = x0)2+(y — o)+ bE.

II1I. DiscussioNs AND CONCLUSION

In this section, we seek an insight into the complex
images by taking a point source charge in the three-layered
medium of Fig. 3 as an example. The formulations for this
problem are given in (12)-(16).

It is very interesting to observe the behavior of the
spectral function A(y) given by (12). Fig. 5 shows the
original - spectral function A(y) as well as the spectral
function with a constant A, subtracted, in the interval
v €[0,T,] where the exponential matching (14) is made. It
is observed that if the three-layered media is replaced by
a homogeneous medium with the effective dielectric con-
stant of (e, + €,,)/2, there will be a spectral error. The
complex images can correct the spectral error effectively.

The complex image series is obtained through Prony’s
method, where the number of complex images is pre-
scribed. We varied the number of images from 2 to 5. It is
found that two images can give the potential function ®
with precision up to four decimal digits, and five images
give six decimal digits. In practical problems, two complex
images are sufficient.

In numerical calculations, the matching truncation point
T, is chosen such that when vy > T, the spectrum func-
tion becomes negligible. We chose T, =10.0/(h, + h,) in
this example.

The spectral function A(y) is a real function in the
electrostatic case. The success of the complex image tech-
nique in this paper implies that a real function could be
accurately approximated by a short series of complex
functions. o '

The complex image technique is simple and quickly
convergent and has been found to be very accurate, e.g.,
error ~ 0.1% in Tables IT and IV, even for multilayered
media. The reason may be that there are extra degrees of
freedom in the imaginary components of the amplitudes
and locations of the complex images. This is in contrast to
the real amplitudes and real locations of the static im-
ages. The field from each complex image may be complex.
For the electrostatic field, the imaginary portions of the



1124 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 7, JULY 1991
TABLE III
ComPLEX IMAGES OF A POINT CHARGE IN A SUBSTRATE—SUPERSTRATE STRUCTURE
€,1=98, Ay =10 mm €,1=2.55, h;=1.0 mm
€,, =255, h,=1.0mm €, =98, hy,=1.0 mm
i al bl al. i
(X 10 mm) (X 10 mm)
1 0.9398 -0.1716 —0.5445 —0.1964
2 —1.2634+;3.1439 —0.7148+ j0.1461 0.6575E-1+ j0.1521E-1 —0.4516— j0.1496
3 —1.2634-;3.1439 —0.7148— ;0.1461 0.6575E-1— jO.1521E-1 —0.4516+ j0.1496

TABLE IV

PotenTIAL FuncTion @ CompuTED BY THE Exact IMAGE SoLUTION AND THE COMPLEX IMAGE SoLUTION

(Z():O‘ z=0. p=\/(x_x0)2+(y_."())z)

€,1=98, h;=1.0mm €, =2.55, h;=1.0 mm
€,,=12.55, h>=1.0mm €,,=938, A =1.0mm
p Numerical Complex Image Numerical Complex Image
(mm) Integration Solution Integration Solution
0.1 1623.00 1622.12 1521.93 1522.00
0.6 270.69 270.20 176.94 176.99
1.1 142.92 14291 63.23 63.22
1.6 91.68 91.90 27.55 27.53
2.1 63.30 63.52 13.17 13.15
31 3322 3331 3.58 3.58
: 2.00 q
= 1.00 -
2
'3 ﬂs A
a 0.50
2 o030 2.50 5.00 7.50 10.00
f 0.00 - 1 1 1 1 T E N S | T S T SN T N Il 1 2 J
E 1 A7) —Ao 7
W © —0.50
0 -
&S
) T AD)
-1.50 +
Fig. 4. Point charge in a general multilayered medium structure. ]
-2.00 -

fields cancel when the ficlds of the complex images are
summed. This cancellation is due to the complex conju-
gate pairing of the images.

The complex images for the static field are discovered
after those of the dynamic field [6]-[9]. However, as the
static field is physically easier to understand than the
dynamic field, these static complex images can be used to
gain an insight into the behavior of the corresponding
dynamic ones.

Recently, this complex image technique was applied to
analyze multiconductor transmission lines in multilayer
dielectric media [12]. With all the computations per-
formed on a personal computer, the agreement between
capacitance matrices and available data is within 1%.

This paper studies only examples of electrostatic fields.
Evidently the same complex image technique can be ap-
plied to other static examples, such as those of magneto-

Fig. 5. Spectral function A(y) (see eq. (12)) for a substrate—super-
strate structure.

statics. The combination of them should be useful for the
multilayered medium found in digital circuits.
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