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Complex Images for Electrostatic Field

Computation in Multilayered Media
Y, Leonard Chow, Member, IEEE, Jian Jun Yang, Member, IEEE, and Gregory E. Howard

Abstract —A rapidly convergent algorithm is presented to Iind
the spatial simulated images of a point charge in multilayered

media. The simulated images turn out to be comple~ i.e., they
have complex amplitudes and are located at complex positions.

Surprisingly, these complex images give very accurately (error

- 0.1%) the static field in multilayered media. The examples of
two- and three-layered media are examined, together with the

available exact image solutions of singly or doubly infinite
series. It is believed that the accuracy and rapid convergence of

the complex images derive from the extra degrees of freedom
arising from the imaginary components of the amplitude and
position.

I. INTRODUCTION

T HE Green’s function–moment method technique has

been used for the static analysis of 2-D transmission

lines [1], [2] and 3-D interdigital capacitors [3]. For a

two-layered dielectric with or without a ground plane, the

Green’s function is represented as an infinite series ob-

tained from image theory [1], [3]. For the three-layered

media, the Green’s function is represented as a doubly

infinite series of images [2]. As pointed out in [4], the

extension of this type of Green’s function to more than

three dielectric layers is impractical, because for N dielec-

tric layers, it should consist of an N – 1 multiply infinite

series<

In this paper, we present an approach which makes it

practical to find the simulated images of a point charge in

multilayered media. For two-layered or three-layered me-

dia, instead of an infinite or a doubly infinite series of

images, the Green’s function presented in this paper

consists of only four terms, i.e., an effective source term

plus three complex images. This new Green’s function is

shown to give an error of the order of 0.19’0 when com-

pared with the rigorous infinite series solution. Also, the

Green’s function for the layered media with more than

four layers still consists of four similar terms.

Complex image theory has been successfully used to

solve the dynamic radiation problem in layered media

[6]-[9]. For static field computations in layered media, it
is shown in this paper that the complex images can also
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Fig. 1. Point charge in free space.

give the real field. To find the complex images,

Y

the same

numerical algorithm, Prony’s method [11], can be used.

No matter how many layers are involved, the sample

points used in Prony’s method are obtained in the same

manner. This situation is analogous to using optimized

simulated images [10] for the field of a point charge

outside of an arbitrarily shaped conductor.

In the following presentation of the theory, we take

two- and three-layered media as examples where the

exact image solutions of infinite series are available. They

allow a comparison between the complex image solution

and the exact image solution. After this comparison, a

general procedure is presented to find the complex im-

ages of a point charge in multilayered media.

H. THEORY

A. Point Charge in Free Space

For easy understanding and comparison with the multi-

layered cases, we begin with a point charge qO in free
space, as shown in Fig. 1. The spatial potential function of

this point charge is known from Coulomb’s law:

@=~
4m-~Or0

(1)

where

rO=J(x-xO)2+(y-yO)2 +(z-zO)2. (2)
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Fig. 2. Point charge on a microstrip substrate.

Through the Fourier transform, it is easily shown that

the spectral potential function is

Qo
qy,z, zo) = —e– Ylz–zol

2Eoy
(3)

where

y=~m. (4)

The spatial potential function (1) is the inverse Fourier

transformation of the spectral potential function (3), i.e.,

Qo 12

(-) // –

+@ q.
—

4~eoro – 27- -cc 2eoy

. ~–ylz–zole –jk.(x–xo)e –jk,(y–yo) dkx dky. (5)

It can be easily shown by direct substitution that the

spatial potential function (1) satisfies the Possion equa-

tion even if the source location (xo, Yo, Zo) is’ complex.

The same applies to (5), which is the identity used below.

B. Point Charge on a Microstrip Substrate

As shown in Fig. 2, a point charge q. is located at

(.xo, Yo, Zo) above a micros~rip substrate. The spectral
domain potential function @ at (x, y, z), which satisfies

the Possion equation and all the boundary conditions, can

be easily derived using the transmission line theory given

in [5]:

a=~” (~-,l.-d+ ‘-e-’” ~-,(.+%)

260y l–Ke-zYh
)

z>(), Zo>(l (6)

where K =(1 – e,)/(1 + e,). Expanding (6) into a Taylor

series:

6=9
260y (

e–w-zol + ~e–Y(z+zo)

+ g ~~–l(~z –l)e– Y(ztzotznh)

)

(7)
n=l

and substituting (7) into the identity (5), we have

where

ro=j(x-xo)2+(y-yo)2+(z-zo)2

r; = J(x–xo)2+(y–yo)2+(z+zo)2

r.=~(x-xo)2+(y-yo)2 +(z+zo+2nh)2.

Expression (8) stands for an exact image sO1utiOn fOr

the microstrip problem in three dimensions, which is

equivalent to that in two dimensions given by Silvester [1].

This exact image solution will be taken as the benchmark

of the complex image solution discussed below.

To get the complex image solution, the following two

steps are always taken:

1) Find the limit of y ~ ~ of the function in (6), i.e.,

~im K– e-’~h

1’-” l–K-Zyh ‘K.
(9)

2) Subtract the above limit from the original function

and match the remainder

exponential functions, i.e.,

K – e-zyh

l–Ke-’~h

with a short sum of decaying

N

i=l

where a, and b, are the complex coefficients determined

through Prony’s method [111. iV is the number of expo-

nential terms, generally taken as 2 N 5. In this paper,

N=3.
Substituting (10) ~nto (6), and taking the inverse Fourier

transformation of ~, we have

where rZ=~(x-xo)2+(y-yo)2 +(z+zo-bZ)2 is a

complex distance, with b, being complex.

In (11), if z = 20 = O, then the first two terms

(1/ r.+ K/ r~) can be written as

2’1

(l+Er) “~

which is essentially an effectiue homogeneous medium

potential function wherein the dielectric constant is equal

to the average of two media. The short series can be

considered as a correction to the effective homogeneous

medium term, each standing for a simulated image with
complex amplitude at located at complex location

(~o, Yo, z. – b,).
Table I lists the complex image coefficients for two

microstrip substrate examples. It is seen that the complex

image coefficients are either paired as complex conjugate

of each other, or just singles and real. This explains why

the complex images give a real-valued field. Table II lists

the values of the function @ computed by the exact image

solution (8) and the complex image solution (11). It is

seen that the difference between these two solutions is of

the order of 0.190 for all the source-to-field point dis-

tances tabulated.
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TABLE I
COMPLEX IMAGES OF A POINT CHAROE ON A MICROSTRIP SUBSTRATE

.s, = 2.55, h= 1.0 mm ~, = 9.6, h= 1.0 mm

i a, a,
(x I}mm) (X l}mm)

1 – 0.7802 –0.1985 – 0.2725 –0.1912
2 0.1084 + jO.3897E-l – 0.3886+ jO.1009 0.4367E-1 + jO.1255E-l – 0.3197+ jO.1474

3 0.1084 – jO.3897E-l – 0.3886 – j0,1009 0.4367E-1 – jO.1255E-l – 0.3197 – j0,1474

TABLE 11

POTENTIAL FUNCTION @ COMPUTED BY THE EXACT IMAGE SOLUTION AND THE

(
COMPLEX IMAGE SOLUTION ZO= O, z = O, ,0= (.x – XO)2+ (y – YO)2

)

●, = 2.55, h= 1.0 mm I e, = 9.6, h= 1.0 mm

Exact Image Complex Image IExact Image Complex Image

(mpm) Solution (8) Solution (11) Solution (8) Solution (11)

0.1 5298.49 5298.45
0.6 619.37 619.36
1.1 223.66 223.67
1.6 99.41 99.43
2.1 49.17 49.17
3.1 15.13 15.13

1729.14 1729.03

192.20 192.16

64.25 64.27

25.69 25.72
11.14 11.14

2.49 2.48

C. Point Charge in a Substrate – Superstrata Structure

As shown in Fig. 3, a point charge qO is located at the

interface of two media (i:e., (ZO = O)). The spectral do-

main potential function @ at the interface of the two

media (i.e., (z = O)) is derived using the transmission line

theory given in [5]:

A(y)

2
.

(6,1 + cthyhl)/(l + c,lcthyhl) + (c,z /~,l)cthyh, “

(12)

Following the same two steps as those in subsection II-B,

we have
2

lim A(y)=
1 + ‘5,2 /~rl

(13)
Y-~

2
A(y) – & ~ a,eh?

l+~r2/~rl ,=1
(14)

Substituting (14) into (12), and taking the inverse Fourier

transformation of 6, we have

The first term in (15) can again be considered an

effectiue homogeneous medium potential function with

dielectric constant equal to the average of two media. The

short series is, again, a correction to the effective homo-

geneous medium term.

For comparison, following the stated procedure of [2],

the exact image solution of the substrate–superstrate in

Fig. 3 is derived in terms of a doubly infinite series:

1
o=~”

4TE0 er~ + erz

~ i i ‘! ( - l)n3Kf’+n3K;2+n3
– o)72=0 (nl, n2, n3— nl!nz!n~!

(1 K1 1 KI
____ _ —+—

)
(16)

r~l r~t rn~ r~d

where

nl+nz+n~=n K1=(l–~,J/(l+~.l) K2 = (6,1 – ~,2)/(~,1 + ~r2)

~.~=~(x -X,)2+(Y - yO)2+[2ni(hl+hz) +2n2h2+2n,h1]2

rnz=~(x-xo)2+(y -yO)2+[2n,(h1+hz) +2n2h2+2(n,+l)h1]2

r.,=~(x-xo)2+(y-yo)2+[2n,(h,+h2)+2(n2+l)h2+2h3h,]2
r.,=~(x-xo)2+(y -yo)2+[2(n1+l)( h1+h2)+2n2h2+2n,h1]2.
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Fig. 3. Point charge in a substrate–superstrate structure.

It turns out that the rigorous solution (16) converges

very slowly, especially when the source-to-field point dis-

tance is large. To check the accuracy of the complex

image solution (16), we would rather calculate the inverse

transformation of (13) directly by using numerical integra-

tion. Table III lists the complex image coefficients for two

sets of dielectric parameters. It is seen that, analogous to

the case of open microstrip substrate, the complex image

coefficients in Table III are also complex conjugates of

one another. Table IV lists Some values of the potential

function @ computed by the complex image solution (16)

and by numerical integration. It is seen that the differ-

ence is again less than 0.1 YOfor the field-to-source point

distances tabulated.

For the case of arbitraV z and ZO, one can easily derive

a spectral potential function using transmission line the-

ory [5]. Then the spatial image solution of the potential

function can be obtained by following the same steps as

(6) to (11).

D. Point Charge in a General Multilayered Medium

Structure

By a general multilayered medium structure, we mean

that (i) the layered medium may have any number of

layers and (ii) the source and field points may be located

at any position within the layered medium. Fig. 4 shows a

point charge in a general multilayered medium structure,

where an exact image solution is impractical and unavail-

able.

For the derivation of the spectral-domain scalar poten-

tial @ in a general multilayered medium, we can use the

transmission line theory given in [5]. @ generally has the

form

(10
6=— “F(y, z,zo)

260E,.y
(17)

where ~,, is the relative dielectric constant of the layer in

which the point charge qO is located. In general, the

spatial coordinates z and Z. in F(7, Z, ZO) may not w-

pear as an exponential function as in (6). To avoid the
sophisticated expression of the spatial potential function,

for arbitrary z and Zo, we would rather fix z and Z. in

numerical computations.
Then, we first take the limit of F’(Y, z, 2.) at y ~ ~, i..e.,

lim F(y, z,zo)=Fo. (18)
Y+m

As the second step, we subtract the limit F. from the

original function F(y) and make the following numerical

match:

N

F(y, z,zo) – F. + ~ aiebiy. (19)
~=1

Substituting (19) into (17) and taking the inverse Fourier

transformation of 0, we get the complex image solution

of 0:

where

ro=J(x- xo)2+(y-yo)2

III. DISCUSSIONS AND CONCLUSION

In this section, we seek an insight into the complex

images by taking a point source charge in the three-layered

medium of Fig. 3 as an example. The formulations for this

problem are given in (12)-(16).

It is very interesting to observe the behavior of the

spectral function A(y) given by (12). Fig. 5 shows the

original spectral function A(y) as well as the spectral

function with a constant xl. subtracted, in the interval

y = [0, ~ol where the exponential matching (14) is made. It
is observed that if the three-layered media is replaced by

a homogeneous medium with the effective dielectric ccm-
stant of (~,1 + ~,2)/2, there will be a spectral error. The

complex images can correct the spectral error effectively.

The complex image series is obtained through Prony’s

method, where the number of complex images is pres-

cribed. We varied the number of images from 2 to 5. It is

found that two images can give the potential function @

with precision up to four decimal digits, and five images

give six decimal digits. In practical problems, two compllex

images are sufficient.

In numerical calculations, the matching truncation point

To is chosen such that when y > To, the spectrum func-

tion becomes negligible. We chose To= 10.O/(hl + h2) in

this example.

The spectral function A(y) is a real function in the

electrostatic case. The success of the complex image tech-

nique in this paper implies that a real function could be

accurately approximated by a short series of complex

functions.

The complex image technique is simple and quickly

convergent and has been found to be very accurate, e.g.,

error N 0.1% in Tables 11 and IV, even for multilayered

media. The reason may be that there are extra degrees of

freedom in the imaginary components of the amplitudes

and locations of the complex images. This is in contrast to

the real amplitudes and real locations of the static im-

ages. The field from each complex image may be complex.

For the electrostatic field, the imaginaw portions of the
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TABLE 111

COMPLEX IMAGES OF A POINT CHAROE IN A SUBSTRATE–SUPERSTRATE STRUCTURE

●,l = 9.8, hl=l.Omm 6,1 = 2.55, hl=l.Omm

e,z = 2.55, }22 = 1.0 mm ●,z = 9.8, hz= 1.0 mm

i a, a,

(X I}mm) (x l}mm)

1 0.9398 –0.1716 – 0.5445 –0.1964
~ – 1.2634+ j3.1439 –0.7148+ jO.1461 0.6575 E-1 + jO.1521E-l – 0.4516 – jO.1496

3 – 1.2634– 13.1439 –0.7148– JO.1461 0.6575 E-1 – jO.1521E-l – 0.4516+ jO.1496

TABLE IV

POTENTIAL FUNCTION @ COMPUTED BY THE EXACT IMAGE SOLUTION AND THE COMPLEX IMAGE SOLUTION

(
Zo=o, z=o. p= (x–xo)z+(y–v,, )~

i

●,l = 9.8, 121= 1.0 mm

●,z = 2.55, /22 = 1.0 mm

Numerical Complex Image

(mpm) Integration Solution

0.1 1623.00 1622.12

0.6 270.69 270.20

1.1 142.92 142.91

1.6 91.68 91.90

2.1 63.30 63.52
3.1 33.22 33.31

*
●

●

,
,
,

Fig. 4. Point charge in a general multilayered medium structure,

fields cancel when the fields of the complex images are

summed. This cancellation is due to the complex conju-

gate pairing of the images.

The complex images for the static field are discovered

after those of the dynamic field [6]–[9]. However, as the

c,~ = 2.55, h,= 1.0 mm

.s,2 = 9.8, kz = 1.0 mm

Numerical Complex Image

Integration Solution

1521.93 1522.00

176.94 176.99

63.23 63.22

27.55 27.53

13.17 13.15

3.58 3.58

2.00

1
1.60

~

G 1.00-
0

s
o 0.60 -G

E 0.7 0 2.50 6.00 7.50 10.00
0.00 1 1 1 J

%
=(y)–AO Y

3
v -0.50-

‘-+=-----
-1.50

-2.00 1

Fig. 5. Spectral function A(y) (see eq. (12)) for a substrate–super-
strate structure.

statics. The combination of them should be useful for the

multilayered medium fcmn d in digital circuits.

static field is physically easier to understand than the

dynamic field, these static complex images can be used to

gain an insight into the behavior of the corresponding
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